5 research outputs found

    First Order Semiclassical Thermal String in the AdS Spacetime

    Get PDF
    We formulate the finite temperature theory for the free thermal excitations of the bosonic string in the anti-de Sitter (AdS) spacetime in the Thermo Field Dynamics (TFD) approach. The spacetime metric is treated exactly while the string and the thermal reservoir are semiclassically quantized at the first order perturbation theory with respect to the dimensionless parameter \epsilon = \a ' H^{-2}. In the conformal D=2+1D=2+1 black-hole AdS background the quantization is exact. The method can be extended to the arbitrary AdS spacetime only in the first order perturbation. This approximation is taken in the center of mass reference frame and it is justified by the fact that at the first order the string dynamics is determined only by the interaction between the {\em free} string oscillation modes and the {\em exact} background. The first order thermal string is obtained by thermalization of the T=0T = 0 system carried on by the TFD Bogoliubov operator. We determine the free thermal string states and compute the local entropy and free energy in the center of mass reference frame.Comment: Minor typos corrected. Two references added. LATeX file, 19 page

    Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    Get PDF
    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is soun

    Batch and Fixed-Bed Column Studies on Palladium Recovery from Acidic Solution by Modified MgSiO3

    No full text
    Effective recovery of palladium ions from acidic waste solutions is important due to palladium’s intensive usage as a catalyst for different industrial processes and to the high price paid for its production from natural resources. In this paper, we test the ability of a new adsorbent, MgSiO3 functionalized by impregnation with DL-cysteine (cys), for palladium ion recovery from waste solutions. The Brunauer–Emmett–Teller (BET) surface area analysis, Barrett–Joyner–Halenda (BJH) pore size and volume analysis, scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and Fourier-Transformed Infrared (FTIR) spectroscopy have been performed to characterize this material. Firstly, the maximum adsorption capacity of the new obtained material, MgSiO3-cys, in batch, was studied. To establish the adsorption mechanism, the obtained experimental data were fitted using the Langmuir, Freundlich and Sips adsorption isotherms. Studies on the adsorption of palladium ions on the synthesized material were performed in a dynamic regime, in a fixed-bed column. The Pd(II) recovery mechanism in the dynamic column regime was established based on Bohart–Adams, Yoon–Nelson, Thomas, and Clark models. The obtained equilibrium adsorption capacity was 9.3 (mg g−1) in static regime (batch) and 3 (mg g−1) in dynamic regime (column). The models that best describe the Pd(II) recovery process for batch and column adsorption are Sips and Clark, respectively
    corecore